Materials and methods
1 Variation Data
1.1 SNP and indel detection
Raw reads were aligned to the ‘LoveⅡ’ reference genome using the mem algorithm of the BWA (0.7.17-r1188) software. The alignment parameters were set to -t 4 -k 32 -M. The SAM file generated by the alignment was converted to format, sorted, and PCR duplicates were removed by Samtools (1.6) software, and finally a BAM file was generated.
Variant detection follows the best practices of GATK (Genome Analysis Toolkit). First, the HaplotypeCaller module was used to detect variations in single samples in GVCF mode (-ERC GVCF). Then, the GVCF data of all samples were merged using the GenomicsDBImport module, and joint genotyping was performed through the GenotypeGVCFs module to obtain the original VCF file containing population variation information.
The SelectVariants module was used to separate SNPs and InDels, and the VariantFiltration module was used to perform hard filtering. The SNP filtering parameters are QD < 2.0 || MQ < 40.0|| FS > 60.0 || SOR > 3.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0. The INDEL filtering parameters are QD < 2.0 || FS > 200.0 || SOR > 10.0 || ReadPosRankSum < -20.0.
1.2 Graph pangenome construction and SV detection
The graphical pan-genome was constructed using the construct command of the vg (v1.44.0) software with ‘Lovell’ as the reference genome. The intergenome comparison was subsequently repeated with the nucmer -c parameter adjusted to 1000. The results were filtered by "delta-filter" with parameters -m -i 90 -l 100, and the result file was generated with “show-coords”. With insertion and deletion variant types extracted for graphical pangenome construction, SV detection was conducted using SyRI. Integration of structural variants was performed using svimmer. The specific command is vg construct -t 50 -S -r ref.fa -v merge_SV.vcf.gz > graph.vg. Resequencing data were compared to the graphical pan-genome using the map command of vg. Read coverage was counted using the pack command, also in vg, and structural variant detection of resequenced individuals was performed using the call command.
2 Website building
Database Construction and Implementation PeachDB was developed using a containerized architecture to ensure system stability and reproducibility. The core framework relies on Drupal 7.64 as the Content Management System (CMS), integrated with the Tripal toolkit (v3.1) for efficient biological data management. Genomic and transcriptomic data were organized using the Chado natural schema within a PostgreSQL (12.22-0ubuntu0.20.04.4) relational database.
For interactive data visualization, we integrated JBrowse (v1.16.x) to display genome assemblies, gene models, and variation tracks (SNPs/Indels). The sequence alignment search function was implemented using NCBI BLAST+ integrated via the Tripal BLAST UI module.
To support advanced genomic selection features, we developed custom modules (“DNNGP” and “LGB”) for online prediction. These modules interact with backend scripts running on Python 3.8.10, utilizing the LightGBM framework for machine learning tasks. The user interface was built upon the “Hardwood” theme based on the Bootstrap framework, ensuring responsive design across desktop and mobile devices. The system is hosted on a Linux server (Ubuntu 20.04 LTS host) utilizing Nginx (1.18.0) as a reverse proxy.
3 Construction of the genomic selection prediction model
The genetic variation data (SNP, Indel, SV) and phenotypic data of the natural population are used as input to train the prediction models of six commonly used methods (DNNGP, GBLUP, LightGBM, SVR, Bayes, XGBoost).
3.1 DNNGP model training 
The principal component analysis (PCA) of SNPs, Indels, and structural variations (SVs) of the natural population was performed using plink (v1.90b6.21) software, and the top 269 (n=269) principal components were selected as input data and converted into PKL format as model input data.
Random numbers were generated using a random seed (randomseed), the number of cross-validation folds (CV) was set to 15, and the index of the validation set fold (part value) was set to 1. The batch-size is optimized by using the dichotomy method. The initial learning rate is set to 0.5-0.7, and the learning rate is dynamically adjusted using the callback function for learning rates built into the DNNGP model. The number of training iterations when the loss value tends to be stable is selected. Dropout1 and Dropout2 (i.e., the proportion of neurons randomly discarded each time) are set to 0.4 and 0.3, respectively. Patience is set to 15. Early-stopping is set to 50. The model performance was evaluated, and the hyperparameters were optimized using the loss value and the Pearson correlation coefficient (the correlation between the predicted value and the true value).
3.2 LGB and SVR model training
The genetic variation data (SNP, Indel) was filled using Beagle (5.4) software, and the file was converted to .csv format. The data was read using Pandas (v2.1.3) in Jupyter Notebook (v6.5.4), and the dataset was divided using the train_test_split function of scikit-learn (v1.6.1).
For the LGB model, the regression model is initialized using Lightgbm (v4.5.0) and trained directly. For the SVR model, in order to eliminate the influence of dimension, scikit-learn (v1.6.1) was used to standardize the features and target variables, respectively. In the hyperparameter tuning stage, the negative mean square error was used as the evaluation index, and the optimal parameter combination was found through grid search and 5-fold cross-validation (cv=5).
After the prediction is completed, the predicted value of SVR is de-normalized and restored. Finally, the Pearson correlation coefficient (PCC), mean square error (MSE), and mean relative error (MRE) were calculated using NumPy (v1.26.4), scikit-learn, and SciPy (v1.11.1). The model is saved through Joblib (v1.2.0).
3.3 XGboost model training
In the Python environment (3.8.10), the genotype matrix after deleting the sample ID column is standardized by StandardScaler (mean value is 0, variance is 1). The model training is realized through the Python xgboost library. The main parameters are set as follows:
•	objective = reg:squarederror
•	booster = gbtree
•	eta = 0.05
•	max_depth = 6
•	subsample = 0.8
•	colsample_bytree = 0.8
•	n_estimators = 500
The 10-fold cross-validation was used to evaluate the model stability, and the model was saved through Joblib (v1.2.0).
3.4 GBLUP and BayesC model training
Before statistical modeling, it is necessary to ensure that missing values have been filled with 0 using Beagle (5.4), as the model does not permit the presence of missing values in the data. The genotype matrix was standardized, and the standardized matrix was recorded as X. The GBLUP and BayesC models were constructed using the BGLR package (v1.1.0) in the R language. The rrBLUP package was used to construct the genomic relationship matrix (G). The calculation formula is as follows:

where m is the number of markers.
The calculated matrix G was used as the kernel function input to realize GBLUP. The model parameters were set as follows: the total number of iterations (nIter) of Markov chain Monte Carlo (MCMC) sampling was set to 10,000, and the burn-in period (burnIn) was set to 2,000. The BayesC model directly uses the genotype matrix X as input, and the parameter ETA is set to model = “BayesC”. Considering the convergence requirements of the model, the parameters were set as follows: the total number of iterations was 5,000, and the burn-in period was 1,000. All the above models outputted the phenotypic prediction values, population mean, and posterior estimates of marker effects or variance components. Ten-fold cross-validation was used to assess model stability. All modeling work was completed in the R language environment, and data processing depended on BGLR, rrBLUP (v4.6.1), data.table, and plyr packages. The running time was recorded by the proc.time function built in R, and all prediction results and cross-validation indicators were saved as CSV files.
4 Genome-wide selection for low-acid population
The whole-genome genetic variation data of the hybrid population was used as input to perform whole-genome prediction of the organic acid content of each single trait. The samples were sorted according to the predicted value, and one-third of the samples with the lowest acid content were selected as the candidate population for the trait. The intersection of the candidate populations of the three traits was taken to obtain the final retained low acid content population.
5 Molecular marker screening of low acid population
According to the SNP sites related to acid content in the existing reports and patents, bcftools v1.13 (htslib v1.13+ds) was used to extract the genotypes of the target sites in the natural population, and the samples were grouped according to the genotypes. The differences in fruit organic acid content between different genotypes were compared using a two-tailed Student’s t-test (two-sided test, significance level p < 0.05) to verify the effectiveness of the candidate molecular markers. According to the results of significant differences, the genotypes were divided into "high acid type" and "low acid type."
In the hybrid population, the same SNP sites were genotyped, and individuals carrying the “low acid type” genotype were screened out as candidate populations. The intersection of the candidate populations obtained from all molecular marker loci was taken to obtain the low acid content population selected by molecular marker-assisted selection.
